

Comparing Design, Analysis and Estimation of a Residential Building with and Without Shear Wall in Zone 4

Mohd Sarmad Khan¹, Ravi Rawat², Shubham Singh³, Suryakant Tripathi⁴ and Mr. Faheemul Islam Kirmani⁵

^{1,2,3,4}Under-Graduate Student, Dept. of Civil Engineering, Galgotia College of Engineering and Technology, Greater Noida, India,

⁵Professor, Dept. of Civil Engineering, Galgotia College of Engineering and Technology, Greater Noida, India

Date of Submission: 12-03-2023

Date of Acceptance: 22-03-2023

ABSTRACT - - In the seismic design of buildings, reinforced concrete structure walls, or shear walls, act as a major earthquake resisting members. Structural walls provide a resistance against the lateral loads system. The properties of these seismic shear walls dominate the response of the building, it is important to evaluate the seismic response of the walls appropriately. Shear walls are generally used in highrise buildings subject to lateral wind and seismic forces. In reinforced concrete framed structures the effects of wind forces increase in significance as the structure increases in height. Codes of practice impose limits on horizontal movement or sway. As we know that in the present scenario buildings with shear walls are gaining more popularity than buildings without shear wall in earthquake prone areas due to its capability to the resistance during earthquake. In this paper 2 storey RCC building is considered for the seismic analysis which is located in zone IV is considered for the analysis. Two models are considered for the analysis out of which one is bare frame model and the other structure with shear wall at various positions is considered. The purpose of standards is to ensure and enhance the safety, keeping careful balance between economy and safety. In the present study G+2 building of 37'6"×33'4" Is designed using STADD PRO software. In order to design them, it is important to first obtain the plan of the particular building that is, positioning of the particular rooms (Drawing room, bed room, kitchen toilet etc.) such that they serve their respective purpose and also suiting to the requirement and comfort of the inhabitants. Thereby depending on the suitability; plan layout of beams and the position of columns are fixed.

Key Words: Shear Wall, Base Shear, Staad Pro, storey displacement, seismic zones

I. INTRODUCTION

Comparative study of a building is to check and compare the strength of the building with and without shear wall. The major criteria now-a-days in designing RCC Structures in seismic zones are control of lateral displacement resulting from lateral forces. In this thesis effort has been made to investigate the effect of Shear Wall position on lateral displacement and Storey Drift in RCC Frames. The major criteria now-adays in designing RCC structures in seismic zones is control of lateral displacement resulting from lateral forces. In this thesis effort has been made to investigate the effect of Shear Wall position on lateral displacement and Storey Drift in RCC Frames. Looking at the past records of Earthquake, there is increase in the demand of Earthquake resisting Building. It was observed that Multi storeyed R.C.C. Buildings with shear wall is economical as compared to without shear wall. Due to major earthquakes in the recent pasts the codal provisions are revised and implementing more weightage on earthquake design of structure.

1.1 OBJECTIVES

To study the storey displacement, bending moment, shear forces of structure with and without shear wall. To calculate and Compare the cost of G+2 Residential Building with and without Shear wall.

1.2 LITERATURE REVIEW

P.P.Chandurkar, Dr.P.S.Pajgade. (2013):- In this paper studied the seismic analysis of the RCC building with and without shear wall for 10 storey building. The main focus of this paper will be solution the shear wall location in multi storey building. Four different models should be considered in zone II zone III zone IV zone V. These four seismic zones and four models should be calculated the parameters like storey displacement,

storey drift. Also calculate the total cost for the ground floor with the both cases replacing column with shear wall. The whole analysis is carried out by using ETAB v.9.5.0 software. For ten storey or below ten storey building the shear wall will not effective. But in high rise building it is effective and also economical. Providing of shear wall at adequate locations substantially reduces the displacements due to earthquake.

Varsha R.Harneanalysed:- A six storey building subjected to earthquake loading in zone II using STAAD Pro and calculated earthquake load using seismic coefficient method (IS 1893 Part II). Four different cases were analysed comprising of a structure without shear wall, structure with L type shear wall, structure with shear wall along periphery, structure with cross type shear wall. The lateral deflection of column for building with shear wall along periphery is reduced as compared to other types of shear walls. It was found that shear wall along periphery is most efficient among all the shear walls considered.

M. S. Aainawala et. al. (2014): Comparative study of multi- storeyed R.C.C. Buildings with and without Shear Walls: He did the comparative study of multistoreyed R.C.C. Buildings with and without Shear Walls. They applied the earthquake load to a building for G+12, G+25, G+38 located in zone II, zone III, zone IV and zone V for different cases of shear wall position. They calculated the lateral displacement and story drift in all the cases. It was observed that Multistoreyed R.C.C. Buildings with shear wall is economical as compared to without shear wall. As per analysis, it was concluded that displacement at different level in multistoreyed building with shear wall is comparatively lesser as compared to R.C.C. building without shear wall. This is important for building design and use of shear walls.

1.3 METHODOLOGY

II. MODELLING AND ANALYSIS

We collected the information about the Zone IV, Area of the building, desired plans for G+2 building with and without shear wall and the data of loads.

2.1 MODELLING

1. G+2 BUILDING WITHOUT SHEAR WALL IN ZONE -IV

2. G+2 BUILDING WITH SHEAR WALL IN ZONE -IV

ANALYSIS DATA

 Table 2.1 Data for Analysis

Table 2.1 Data for Analysis				
PLAN SIZE	11.43m X 10.16m			
NO.OF STOREYS	2			
STOREY HEIGHT	3.2004m			
WALL THICKNESS	0.23m			
SLAB THICKNESS	0.1524m			
COLUMN SIZE	0.3048mX0.3048m			
BEAM SIZE	0.3048mX0.3048m			
GRADE OF STEEL	Fe 415			
GRADE OF	M20			
CONCRETE				
DEAD LOAD	14KN / m			
LIVE LOAD	3.81KN / m			
SOIL CONDITION	Medium			
THICKNESS OF SHEAR	0.1524m			
WALL				

PLANNING

Data Required for Modeling:-

Length of the bay	11.43m
Height of the bay	9.6012m
Width of the bay	10.16m
No of bays along the	3
length	
No of bays along the	3
height	
No of bays along the	2
width	

Table 2.2 Building Dimensions

100 1000

Fig. 2.2 Front view of the building

Fig. 2.3 Isometric view

DESIGNING

Fig. 2.5 3D Rendered Model with Shear Wall

Fig. 2.6 Dead Load

Fig. 2.7 Live Load

Fig. 2.4 3D Rendered Model without Shear Wall

Fig. 2.8 The wind load acting on building in W+X Direction

Fig. 2.9 The wind load acting on building in W+Z Direction

Fig. 2.10 Seismic Load Acting on Building EQ+X

Fig. 2.11 Seismic Load Acting on Building EQ+Z

III. SHEAR WALL

1. While columns and load-bearing walls keep buildings standing up, carrying the compression load of the structure down to its foundation, the shear wall is what keeps structures from blowing over, resisting the lateral forces of wind and seismic activity.

2. Shear walls are especially important in high rise buildings. In residential buildings, shear walls provide all of the lateral supports for the building and reduce lateral sway of the building.

3. Almost all houses have external shear walls, but internal shear walls are typically found only in larger houses and high-rise buildings subject to

lateral winds and seismic forces. The taller the building, the greater the need for internal shear walls and a lateral force resisting system.

4. Shear wall behavior depends upon Material used, wall thickness, wall length, wall positioning in building frame also.

3.1 ADVANTAGES OF SHEAR WALLS

- 1. Easy to Construct.
- 2. Easily Implemented at the Site.
- 3. Minimum Earthquake Damage.

3.2 STAAD. PRO

STAAD Pro is a Structural Analysis and Design Program Software.

It includes a state-of-the-art user interface, visualization tools and international design codes.

It is used for 3D model generation, analysis and design The commercial version of STAAD Pro supports several steel, concrete and timber design codes.

It is one of the software applications created to help Structural Engineers to automate their tasks and to remove the tedious and long procedures of the manual methods.

IV. **RESULTS AND DISCUSSIONS** Table 4 MAXIMUM DISPLACEMENT

	Model Name	Maximum
		displacement(in)
	Seismic Zone	Zone IV
	Without Shear	0.023
Wall		
	With Shear	0.015
Wall		

Table 4.1 Combination Stress values

4.1 BENDING MOMENT

Table 4.1 Bending Moment values				
Model Name	Bending Moment			
	(kN/m)			
Seismic Zone	Zone IV			
Without Shear Wall	38.66			
With Shear Wall	18.29			

Graph 4.1 Comparison of Bending Moments

4.2 BASE SHEAR

	Dase Shear (KIVII)
Seismic Zone	Zone IV
Without Shear Wall	25.138
With Shear Wall	14.074

Graph 4.2 Comparison of Base Shear

4.3 ESTIMATION

 Table 4.3(a) : Rate Analysis without Shear wall

AMOUNT(IN RS.	PER	RATE(IN RS.)	REQ. QUANTITY	DESCRIPTION	SNO.
3251.2	CUBIC METRE	150	21675	EARTHWORK	_
5008t7	CUBIC METRE	1430	33.609	2 SANDLAYER	
40744	CUBIC METRE	3450	11,61	PCC	
2514	SMT	330	0.762	4 OPC	
42365	CUBIC METRE	3800	111.495	5 ACC	
63177	CUBICINETRE	400	131.62	BRICK MASONARY	
				(16)	
797	SOLIAPE METRE	700	102.54	7 FLOORING	- 8
			0.00	(100mm, 124)	
500	SOLIAFE METRE	300	1723.9	8 PLASTERING [14]	
18962	SQUARE METRE	10	1723.9	SWHITE CEMENT	ž
25487.	SQUARE METRE	125	1723.9	DISTEMBER	- P
34478	SQUARE METRE	200	1723.9	T(PAINT(non-texture)	
29850	SQUARE METRE	1000	298.502	MARBLE FLOOR	- b
16250	NUMBER	6500	3	DOORS	1
3150	NUMBER	3500	9	N WADOWS	j
2987132.4	TOTAL				
4301132.4	TOTAL.				
119245.29	5	.03		CONTIGENCIES	
74528.3		2.50%		WORK CHARGE	
- Sterrick				ESTABLISHMENT	
298113.24		10%		CONTRACTOR	
3473019.25	GRAND TOTAL				

SNO.	DESCRIPTION	REQ. QUANTITY	RATE(IN RS.)	PER	AMOUNT(IN RS.)
1	EARTHWORK	21.675	150	CUBIC METRE	3251.25
2	SAND LAYER	33.839	5480	CUBIC METRE	50081.72
3	PCC	11.81	3450	CUBIC METRE	40744.5
4	DPC	0.762	330	SMT	251.46
5	RCC	111.495	3800	CUBIC METRE	423681
6	SHEAR WALL	18.66	3500	CUBIC METRE	65310
7	BRICK MASONAR (1.1)	106.521	4800	CUBIC METRE	511300,0
8	FLOORING (100mm, 1.2.4)	102.54	700	SOLIARE METRE	71771
9	PLASTERING(1.4)	1723.9	300	SQUARE METRE	51717
10	WHITE CEMENT	1723.9	110	SQUARE METRE	189621
11	DISTEMBER	1723.9	125	SQUARE METRE	215487.5
12	PAINT(non texture	1723.9	200	SQUARE METRE	344780
13	MARBLE FLOOR	296.502	1000	SQUARE METRE	296502
14	DOORS	25	6500	NUMBER	16250
15	WINDOWS	0	3500	NUMBER	3150
				TOTAL	2925967.2
	CONTIGENCIES		4%		117038.6
_	WORK CHARGE ESTABLISHMENT		2.50%		73149.16
_	CONTRACTOR		10%		292596.7
				GRAND TOTAL	3408751.81

Table 4.3(b) : Rate Analysis with Shear wall

It is clear from the table 4.3(a) & table 4.3(b) that rate of G+2 residential building without shear wall is around

Rs. 34,73,019.28 & rate of building with shear wall is Rs. 34,08,751.81

There is a difference of total Rs. 64,267.19. Therefore shear wall is cost effective.

V. CONCLUSIONS

In zone-4 the maximum displacement is 34.7% less in building with shear wall when compared to building without shear wall.

In zone-4 the Bending moment is 52.6% less in building with shear wall when compared to building without shear wall.

In zone-4 the base shear is 44.01% less in building with shear wall when compared to building without shear wall.

The Cost of building is 1.85% less in building with shear wall when compared to building without shear wall.

Hence we can conclude that shear wall in building reduces maximum displacement, bending moment, combination stresses and cost of the building. So building with shear wall is better when compared to building without shear wall.

REFERENCES

- [1]. Harne R. V., "Comparative Study of Strength of RC Shear Wall at Different Location on Multi-storied Residential Building"(IJCER)Volume 5, Number 4,
- [2]. Chandurpur P.P, Dr.Pajgade P.S (2013) "Seismic Analysis Of RCC Building with and without shear
- [3]. wall." International Journal Of Modern Engineering Research (IJMER) (2249-6645).
- [4]. A.B. Karnale and Dr. D. N. Shinde, Comparative Seismic Analysis of High Rise and Low Rise RCC Building with Shear Wall, International Journal of Innovative Research in Science, Engineering and Technology, September 2015.
- [5]. Chowdary, P.V.S.and Pandian, S.M. (2014),"A Comparative Study on RCC Structure with and without Shear Wall", International Journal for Scientific Research & Development, IJSRD, Vol. 2, No.2.
- [6]. P.P Chandurkar, DR. P.S. Pajgade, "Seismic analysis of RCC building with and without shear wall" IJMER, Vol.3, Issue 3, may- june 2013,pp- 1805 -1810,2013
- [7]. Himalee Rahangdale, et al, "Design and Analysis of Multi storied Building with Effect of Shear Wall", Vol. 3, Issue 3, May- Jun 2013, pp.223-232.2.
- [8]. Romy M and Prabha C (2011), "Dynamic Analysis of RCC Buildings with Shear Wall", International Journal of Earth Sciences and Engineering, ISSN 0974-5904, Vol. 04, 659-662.